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Abstract. For k ≥ 2, we construct finite Z/2Z-CW complexes with one Z/2Z-cell in
dimensions 0, 1 and k+1. Using a theorem of Bruce Hughes, we show that these complexes
are not homotopically stratified by orbit type in the sense of Quinn.

Homotopically stratified sets were introduced by Quinn in [5] as a means of studying

purely topological stratified phenomena. Quinn showed, under suitable conditions, that

the orbit space of a finite group acting on a manifold, with the orbit type partition, is

a homotopically stratified set ([5, Corollary 1.6]). In this paper we construct examples

of Z/2Z-CW complexes having few Z/2Z-cells whose orbit spaces, with the orbit type

partition, are not homotopically stratified.

A closed subspace Y of a space X is forward tame in X if there exists a neighborhood

U of Y in X and a homotopy H : U × I → X such that H0 is inclusion U ↪→ X, Ht|Y
is inclusion Y ↪→ X for every t ∈ I, H1(U) = Y and H((U − Y ) × [0, 1)) ⊆ X − Y . The

homotopy link of Y in X is holink(X, Y ) = {ω ∈ XI | ω(t) ∈ Y if and only if t = 0}. A

stratification of a space X consists of an indexed locally finite partition {Xi | i ∈ I} of X

by locally closed subspaces. We refer to X together with its stratification as a stratified

space. Given a space X with an action of a group G, the orbit type corresponding to a

subgroup H ⊂ G is the set of all points in X whose isotropy group is conjugate to H. The

orbit type partition of X consists of the connected components of the orbit types of X.

The orbits of these components give a partition of the orbit space G\X.

A stratified space X is said to satisfy the frontier condition if for every i, j ∈ I, Xi ∩
closure(Xj) 6= ∅ implies that Xi ⊆ closure(Xj). This induces a relation < on I, defined

by i < j if and only if i 6= j and Xi ⊂ closure(Xj). The orbit type stratification of a finite

G-CW complex need not satisfy the frontier condition. For example, let X = S1 ∨S1 ∨S1

be the wedge of three circles along a basepoint ∗. Express X − ∗ as the union of three
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disjoint 1-cells e11, e
1
2, e

1
3 whose closures are the corresponding S1 factors and give X the

Z/2Z-CW complex structure: one Z/2Z-0-cell, the basepoint ∗ (isotropy Z/2Z), and two

Z/2Z-1-cells: e11 ∪ e12 on which Z/2Z acts by interchanging e11 and e12 (trivial isotropy)

and e13 (isotropy Z/2Z). The orbit type stratification on X does not satisfy the frontier

condition since e13 ∪ ∗ is not a subset of the closure of e1j for j = 1, 2.

Definition 1 ([3, Definition 5.2]). A stratified space X satisfying the frontier condition is

homotopically stratified if the following conditions are satisfied.

(1) Forward tameness: For every k > i, Xi is forward tame in Xi ∪Xk.

(2) Normal fibrations: For every k > i, evaluation at the initial point of a path,

ev0 : holink(Xi ∪Xk, Xi)→ Xi, is a Hurewicz fibration.

We construct examples of Z/2Z-CW complexes that satisfy the frontier condition and

the forward tameness condition, but are not homotopically stratified by orbit type.

Proposition 2. Let X be a metric space and Y ⊆ X a closed subspace. Let U be a

neighborhood of Y in X. Suppose ev0 : holink(X, Y ) → Y is a Hurewicz fibration. Then

the restriction of ev0 to holink(U, Y ) is also a Hurewicz fibration.

Proof. Since holink(U, Y ) and Y are metrizable, it suffices to verify the homotopy lifting

property with respect to metric spaces [2, XX, Corollary 2.3]. Let Z be a metric space

and f : Z → holink(U, Y ), F : Z × I → Y be a lifting problem, i.e., ev0 ◦f = F0. Since

ev0 : holink(X, Y )→ Y is a Hurewicz fibration, there exists F̃ : Z×I → holink(X, Y ) such

that ev0 ◦F̃ = F and F̃0 = i ◦ f , where i : holink(U, Y ) ↪→ holink(X, Y ) is inclusion. As

in the proof of [5, Lemma 2.4(1)], there is a continuous function r : holink(X, Y )→ (0, 1]

such that for every ω in holink(X, Y ), ω([0, r(ω)]) ⊆ U . Note that holink(U, Y ) is open

in holink(X, Y ). Therefore, F̃−1(holink(U, Y )) is open in Z × I and it contains Z × {0}.
Thus, Z × {0} and Z × I − F̃−1(holink(U, Y )) are disjoint closed sets in the metric space

Z × I, and so there exists a continuous φ : Z × I → [0, 1] such that φ|Z×{0} = 1 and

φ|Z×I− eF−1(holink(U,Y )) = 0. Let µ = max(φ, r ◦ F̃ ). Then F̂ (z, t)(s) := F̃ (z, t)(µ(z, t)s)

defines a homotopy F̂ : Z × I → holink(U, Y ) such that ev0 ◦F̂ = F and F̂0 = f . Hence,

the restriction of ev0 to holink(U, Y ) is also a Hurewicz fibration. �

Our Proposition 2 is closely related to [4, Proposition 4.4] in which the same conclusion

is reached under the additional hypothesis that Y is forward tame in X.
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Lemma 3. Let U := (X × (0, 1]) ∪f Y be the half open mapping cylinder of f : X → Y ,

and let N := (X × [1/2, 1]) ∪f Y . Then ev0 : holink(N, Y )→ Y is a Hurewicz fibration if

ev0 : holink(U, Y )→ Y is a Hurewicz fibration.

Proof. Define a retraction r : U → N by

r(z, t) =

{
(z, 1/2) if 1/2 < t < 1

(z, t) if 0 ≤ t ≤ 1/2

and r(y) = y if y ∈ Y . Since r(U−Y ) ⊆ N−Y , r induces a retraction r∗ : holink(U, Y )→
holink(N, Y ), defined by r∗(ω) = r ◦ ω. The result now follows from the fact that the

retract of a fibration is a fibration. �

Let p : Sn → Sm be a surjective map. Take two disjoint copies of Sn and map them both

to Sm using p; call the resulting map q : Sn
∐
Sn→ Sm. Attach a pair of (n+1)-cells to Sm

using q and call the resulting space E(p). Define a Z/2Z-action on E(p) by interchanging

the interior of the two (n + 1)-cells and leaving the Sm subspace fixed. The space E(p)

is a Z/2Z-CW complex with strata (by orbit type): Sm ⊆ E(p) (isotropy Z/2Z) and the

two (n + 1)-cells (trivial isotropy). By [5, Theorem 1.4], E(p) is homotopically stratified

by orbit type if and only if (Z/2Z) \E(p) is homotopically stratified by orbit type.

Theorem 4. If E(p) is homotopically stratified by orbit type, then the attaching map

p : Sn → Sm is an approximate fibration.

Proof. The orbit space, X = (Z/2Z) \E(p), of E(p) is the CW complex obtained by

attaching an (n + 1)-cell to Sm via the attaching map p. Since E(p) is homotopically

stratified by orbit type, so is X with strata X0 = Sm and X1 equal to the open (n+1)-cell.

Let U = X − x1, where x1 is in X1. By Proposition 2, ev0 : holink(U, Sm) → Sm is a

Hurewicz fibration. Since U is homeomorphic to (Sn×(0, 1])∪pS
m, the half open mapping

cylinder of p : Sn → Sm, Lemma 3 implies that ev0 : holink(N,Sm) → Sm is a Hurewicz

fibration, where N = (Sn × [1/2, 1]) ∪p S
m. Therefore, ev0 : holink(cyl(p), Sm)→ Sm is a

Hurewicz fibration, since cyl(p) = (Sn × [0, 1]) ∪p S
m, the mapping cylinder of p : Sn →

Sm, is homeomorphic to N . Since Sm ⊆ cyl(p) is forward tame, cyl(p) is homotopically

stratified with strata Sm and Sn × [0, 1). By [3, Theorem 5.11], p : Sn → Sm is an

approximate fibration. �

Lemma 5. Suppose p : Sk → S1 is a smooth surjective map and k > 1. Then p is not an

approximate fibration.
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Proof. By Sard’s Theorem, p must have a regular value z in S1. Then F = p−1({z}) is

a smooth compact (k − 1)-manifold. Let F0 be a path component of F and x0 in F0 a

basepoint. Since F is a smooth submanifold of Sk, its shape homotopy groups coincide

with its homotopy groups. Suppose p is an approximate fibration. Then the corresponding

homotopy long exact sequence for approximate fibrations, [1, Corollary 3.5], implies that

πm(F0, x0) ∼= πm(Sk, x0) for m ≥ 1. It follows that F0 is (k − 1)-connected and so by

Hurewicz’s Theorem, πk(F0, x0) ∼= Hk(F0). Since F0 is a (k − 1)-manifold and k > 1,

Hk(F0) = 0 contradicting πk(F0, x0) ∼= πk(Sk, x0) ∼= Z. �

Combining Theorem 4 and Lemma 5 yields:

Theorem 6. Suppose p : Sk → S1 is a smooth surjective map and k > 1. Then the

Z/2Z-CW complex E(p) is not homotopically stratified by orbit type. �

Note that for p as in Theorem 6 the space E(p) is a topological manifold of dimension

(k + 1) away from a codimension k singular set homeomorphic to S1. Although E(p) is

not homotopically stratified by orbit type, the orbit type partition may have a refinement

for which E(p) is homotopically stratified. For example, if the surjective map p : Sk → S1

is subanalytic then [3, Corollary 7.5] asserts that there are Whitney stratifications of Sk

and S1 such that p becomes a stratified approximate fibration. By [3, Theorem 5.11],

cyl(p) with its natural partition is homotopically stratified and it follows that E(p) with

the corresponding partition, refining the orbit type partition, is homotopically stratified.

References

[1] D.S. Coram and P.F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275–288.
[2] J. Dugundji, Topology. Englewood Cliffs, NJ, Prentice-Hall, 1965.
[3] B. Hughes, Stratifications of mapping cylinders, Topology Appl. 94 (1999), 27–145.
[4] B. Hughes, L. Taylor, S. Weinberger and B. Williams, Neighborhoods in stratified spaces with two

strata, Topology 39 (2000), no. 5, 873–919.
[5] F. Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988), 441–499.

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario,
Canada L8S 4K1

E-mail address: nicas@mcmaster.ca

Department of Mathematics and Computer Science, St. Johns University, 8000 Utopia
Pkwy, Jamaica, NY 11439, USA

E-mail address: rosenthd@stjohns.edu


