FINITE $\mathbb{Z}/2\mathbb{Z}$ -CW COMPLEXES WHICH ARE NOT HOMOTOPICALLY STRATIFIED BY ORBIT TYPE

ANDREW NICAS* AND DAVID ROSENTHAL

ABSTRACT. For $k \geq 2$, we construct finite $\mathbb{Z}/2\mathbb{Z}$ -CW complexes with one $\mathbb{Z}/2\mathbb{Z}$ -cell in dimensions 0, 1 and k+1. Using a theorem of Bruce Hughes, we show that these complexes are not homotopically stratified by orbit type in the sense of Quinn.

Homotopically stratified sets were introduced by Quinn in [5] as a means of studying purely topological stratified phenomena. Quinn showed, under suitable conditions, that the orbit space of a finite group acting on a manifold, with the orbit type partition, is a homotopically stratified set ([5, Corollary 1.6]). In this paper we construct examples of $\mathbb{Z}/2\mathbb{Z}$ -CW complexes having few $\mathbb{Z}/2\mathbb{Z}$ -cells whose orbit spaces, with the orbit type partition, are not homotopically stratified.

A closed subspace Y of a space X is forward tame in X if there exists a neighborhood U of Y in X and a homotopy $H:U\times I\to X$ such that H_0 is inclusion $U\hookrightarrow X$, $H_t|_Y$ is inclusion $Y\hookrightarrow X$ for every $t\in I$, $H_1(U)=Y$ and $H((U-Y)\times [0,1))\subseteq X-Y$. The homotopy link of Y in X is holink $(X,Y)=\{\omega\in X^I\mid \omega(t)\in Y \text{ if and only if }t=0\}$. A stratification of a space X consists of an indexed locally finite partition $\{X_i\mid i\in \mathcal{I}\}$ of X by locally closed subspaces. We refer to X together with its stratification as a stratified space. Given a space X with an action of a group G, the orbit type corresponding to a subgroup $H\subset G$ is the set of all points in X whose isotropy group is conjugate to H. The orbit type partition of X consists of the connected components of the orbit types of X. The orbits of these components give a partition of the orbit space $G\setminus X$.

A stratified space X is said to satisfy the frontier condition if for every $i, j \in \mathcal{I}$, $X_i \cap \operatorname{closure}(X_j) \neq \emptyset$ implies that $X_i \subseteq \operatorname{closure}(X_j)$. This induces a relation < on \mathcal{I} , defined by i < j if and only if $i \neq j$ and $X_i \subset \operatorname{closure}(X_j)$. The orbit type stratification of a finite G-CW complex need not satisfy the frontier condition. For example, let $X = S^1 \vee S^1 \vee S^1$ be the wedge of three circles along a basepoint *. Express X - * as the union of three

Date: December 12, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 57N80, 57S17, 57N40.

Key words and phrases. CW complex, homotopically stratified, orbit type.

^{*}Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

disjoint 1-cells e_1^1, e_2^1, e_3^1 whose closures are the corresponding S^1 factors and give X the $\mathbb{Z}/2\mathbb{Z}$ -CW complex structure: one $\mathbb{Z}/2\mathbb{Z}$ -0-cell, the basepoint * (isotropy $\mathbb{Z}/2\mathbb{Z}$), and two $\mathbb{Z}/2\mathbb{Z}$ -1-cells: $e_1^1 \cup e_2^1$ on which $\mathbb{Z}/2\mathbb{Z}$ acts by interchanging e_1^1 and e_2^1 (trivial isotropy) and e_3^1 (isotropy $\mathbb{Z}/2\mathbb{Z}$). The orbit type stratification on X does not satisfy the frontier condition since $e_3^1 \cup *$ is not a subset of the closure of e_j^1 for j = 1, 2.

Definition 1 ([3, Definition 5.2]). A stratified space X satisfying the frontier condition is homotopically stratified if the following conditions are satisfied.

- (1) Forward tameness: For every k > i, X_i is forward tame in $X_i \cup X_k$.
- (2) Normal fibrations: For every k > i, evaluation at the initial point of a path, $\text{ev}_0 : \text{holink}(X_i \cup X_k, X_i) \to X_i$, is a Hurewicz fibration.

We construct examples of $\mathbb{Z}/2\mathbb{Z}$ -CW complexes that satisfy the frontier condition and the forward tameness condition, but are not homotopically stratified by orbit type.

Proposition 2. Let X be a metric space and $Y \subseteq X$ a closed subspace. Let U be a neighborhood of Y in X. Suppose ev_0 : $\operatorname{holink}(X,Y) \to Y$ is a Hurewicz fibration. Then the restriction of ev_0 to $\operatorname{holink}(U,Y)$ is also a Hurewicz fibration.

Proof. Since holink(U,Y) and Y are metrizable, it suffices to verify the homotopy lifting property with respect to metric spaces [2, XX, Corollary 2.3]. Let Z be a metric space and $f: Z \to \operatorname{holink}(U,Y)$, $F: Z \times I \to Y$ be a lifting problem, i.e., $\operatorname{ev}_0 \circ f = F_0$. Since $\operatorname{ev}_0: \operatorname{holink}(X,Y) \to Y$ is a Hurewicz fibration, there exists $\widetilde{F}: Z \times I \to \operatorname{holink}(X,Y)$ such that $\operatorname{ev}_0 \circ \widetilde{F} = F$ and $\widetilde{F}_0 = i \circ f$, where $i: \operatorname{holink}(U,Y) \hookrightarrow \operatorname{holink}(X,Y)$ is inclusion. As in the proof of $[5, \operatorname{Lemma} 2.4(1)]$, there is a continuous function $r: \operatorname{holink}(X,Y) \to (0,1]$ such that for every ω in $\operatorname{holink}(X,Y)$, $\omega([0,r(\omega)]) \subseteq U$. Note that $\operatorname{holink}(U,Y)$ is open in $\operatorname{holink}(X,Y)$. Therefore, $\widetilde{F}^{-1}(\operatorname{holink}(U,Y))$ is open in $Z \times I$ and it contains $Z \times \{0\}$. Thus, $Z \times \{0\}$ and $Z \times I - \widetilde{F}^{-1}(\operatorname{holink}(U,Y))$ are disjoint closed sets in the metric space $Z \times I$, and so there exists a continuous $\phi: Z \times I \to [0,1]$ such that $\phi|_{Z \times \{0\}} = 1$ and $\phi|_{Z \times I - \widetilde{F}^{-1}(\operatorname{holink}(U,Y))} = 0$. Let $\mu = \max(\phi, r \circ \widetilde{F})$. Then $\widehat{F}(z,t)(s) := \widetilde{F}(z,t)(\mu(z,t)s)$ defines a homotopy $\widehat{F}: Z \times I \to \operatorname{holink}(U,Y)$ such that $\operatorname{ev}_0 \circ \widehat{F} = F$ and $\widehat{F}_0 = f$. Hence, the restriction of ev_0 to $\operatorname{holink}(U,Y)$ is also a Hurewicz fibration.

Our Proposition 2 is closely related to [4, Proposition 4.4] in which the same conclusion is reached under the additional hypothesis that Y is forward tame in X.

Lemma 3. Let $U := (X \times (0,1]) \cup_f Y$ be the half open mapping cylinder of $f : X \to Y$, and let $N := (X \times [1/2,1]) \cup_f Y$. Then $\operatorname{ev}_0 : \operatorname{holink}(N,Y) \to Y$ is a Hurewicz fibration if $\operatorname{ev}_0 : \operatorname{holink}(U,Y) \to Y$ is a Hurewicz fibration.

Proof. Define a retraction $r: U \to N$ by

$$r(z,t) = \begin{cases} (z,1/2) & \text{if} \quad 1/2 < t < 1\\ (z,t) & \text{if} \quad 0 \le t \le 1/2 \end{cases}$$

and r(y) = y if $y \in Y$. Since $r(U - Y) \subseteq N - Y$, r induces a retraction r_* : holink $(U, Y) \to$ holink(N, Y), defined by $r_*(\omega) = r \circ \omega$. The result now follows from the fact that the retract of a fibration is a fibration.

Let $p: S^n \to S^m$ be a surjective map. Take two disjoint copies of S^n and map them both to S^m using p; call the resulting map $q: S^n \coprod S^n \to S^m$. Attach a pair of (n+1)-cells to S^m using q and call the resulting space E(p). Define a $\mathbb{Z}/2\mathbb{Z}$ -action on E(p) by interchanging the interior of the two (n+1)-cells and leaving the S^m subspace fixed. The space E(p) is a $\mathbb{Z}/2\mathbb{Z}$ -CW complex with strata (by orbit type): $S^m \subseteq E(p)$ (isotropy $\mathbb{Z}/2\mathbb{Z}$) and the two (n+1)-cells (trivial isotropy). By [5, Theorem 1.4], E(p) is homotopically stratified by orbit type if and only if $(\mathbb{Z}/2\mathbb{Z}) \setminus E(p)$ is homotopically stratified by orbit type.

Theorem 4. If E(p) is homotopically stratified by orbit type, then the attaching map $p: S^n \to S^m$ is an approximate fibration.

Proof. The orbit space, $X = (\mathbb{Z}/2\mathbb{Z}) \setminus E(p)$, of E(p) is the CW complex obtained by attaching an (n+1)-cell to S^m via the attaching map p. Since E(p) is homotopically stratified by orbit type, so is X with strata $X_0 = S^m$ and X_1 equal to the open (n+1)-cell. Let $U = X - x_1$, where x_1 is in X_1 . By Proposition 2, ev₀: holink $(U, S^m) \to S^m$ is a Hurewicz fibration. Since U is homeomorphic to $(S^n \times (0,1]) \cup_p S^m$, the half open mapping cylinder of $p: S^n \to S^m$, Lemma 3 implies that ev₀: holink $(N, S^m) \to S^m$ is a Hurewicz fibration, where $N = (S^n \times [1/2,1]) \cup_p S^m$. Therefore, ev₀: holink $(\operatorname{cyl}(p), S^m) \to S^m$ is a Hurewicz fibration, since $\operatorname{cyl}(p) = (S^n \times [0,1]) \cup_p S^m$, the mapping cylinder of $p: S^n \to S^m$, is homeomorphic to N. Since $S^m \subseteq \operatorname{cyl}(p)$ is forward tame, $\operatorname{cyl}(p)$ is homotopically stratified with strata S^m and $S^n \times [0,1)$. By [3, Theorem 5.11], $p: S^n \to S^m$ is an approximate fibration.

Lemma 5. Suppose $p: S^k \to S^1$ is a smooth surjective map and k > 1. Then p is not an approximate fibration.

Proof. By Sard's Theorem, p must have a regular value z in S^1 . Then $F = p^{-1}(\{z\})$ is a smooth compact (k-1)-manifold. Let F_0 be a path component of F and x_0 in F_0 a basepoint. Since F is a smooth submanifold of S^k , its shape homotopy groups coincide with its homotopy groups. Suppose p is an approximate fibration. Then the corresponding homotopy long exact sequence for approximate fibrations, [1, Corollary 3.5], implies that $\pi_m(F_0, x_0) \cong \pi_m(S^k, x_0)$ for $m \geq 1$. It follows that F_0 is (k-1)-connected and so by Hurewicz's Theorem, $\pi_k(F_0, x_0) \cong H_k(F_0)$. Since F_0 is a (k-1)-manifold and k > 1, $H_k(F_0) = 0$ contradicting $\pi_k(F_0, x_0) \cong \pi_k(S^k, x_0) \cong \mathbb{Z}$.

Combining Theorem 4 and Lemma 5 yields:

Theorem 6. Suppose $p: S^k \to S^1$ is a smooth surjective map and k > 1. Then the $\mathbb{Z}/2\mathbb{Z}$ -CW complex E(p) is not homotopically stratified by orbit type.

Note that for p as in Theorem 6 the space E(p) is a topological manifold of dimension (k+1) away from a codimension k singular set homeomorphic to S^1 . Although E(p) is not homotopically stratified by orbit type, the orbit type partition may have a refinement for which E(p) is homotopically stratified. For example, if the surjective map $p: S^k \to S^1$ is subanalytic then [3, Corollary 7.5] asserts that there are Whitney stratifications of S^k and S^1 such that p becomes a stratified approximate fibration. By [3, Theorem 5.11], $\operatorname{cyl}(p)$ with its natural partition is homotopically stratified and it follows that E(p) with the corresponding partition, refining the orbit type partition, is homotopically stratified.

REFERENCES

- [1] D.S. Coram and P.F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275–288.
- [2] J. Dugundji, Topology. Englewood Cliffs, NJ, Prentice-Hall, 1965.
- [3] B. Hughes, Stratifications of mapping cylinders, Topology Appl. 94 (1999), 27–145.
- [4] B. Hughes, L. Taylor, S. Weinberger and B. Williams, Neighborhoods in stratified spaces with two strata, Topology **39** (2000), no. 5, 873–919.
- [5] F. Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988), 441–499.

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

E-mail address: nicas@mcmaster.ca

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, St. Johns University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA

E-mail address: rosenthd@stjohns.edu