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1 Johnson-Lindenstrauss Lemma

There are new achievements on the exactness of the Johnson-Lindenstrauss lemma,
see [LN16+] and [AK16+].
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2 Fibred embeddings

On page 32 I used fibered instead of fibred.

3 Definitions of type and cotype

In this book type p means Rademacher type p and cotype q means Rademacher cotype
q.

4 To section 3.3

page 92, lines 7 and 8 from above: i = k should be replaced by k = 1

5 To section 3.4 and Exercise 3.37: On the number of rele-
vant scales for a finite metric space

For an n-element metric space X = {x1, . . . , xn} with metric d we introduce an array

containing n(n−1)
2

numbers d(xi, xj), i < j. We assume that all distances are at least
1. The number of relevant scales for the metric space X is defined as the number
of intervals [2i−1, 2i) i = 1, 2, . . . containing some elements of the array d(xi, xj),
i < j. Let RS(n) be the maximal number of relevant scales which an n-element
metric space may have.

Using the hint to Exercise 3.37 (or without it) one can construct a n-element
metric space with 2n − 3 relevant scales. Somewhat surprisingly one cannot get
more, that is

RS(n) = 2n− 3.

The upper bound is due to Dömötör Pálvölgyi (posted on MathOverflow.net on
July 28, 2013, see http://mathoverflow.net/a/137976/955). Here is his proof:

Represent the metric space as a weighted complete graph whose vertex set is
X and the weights on its edges are the distances, d(xi, xj). Consider a minimum
weight spanning tree T in this graph. Denote the weights of the edges of this tree
by d1, . . . , dn−1, suppose d1 ≤ . . . ≤ dn−1.

Lemma 5.1. All distances of the metric space X are contained in the intervals
of the form [2m, 2m+1) containing at least one number of the form

∑
i∈I di, where

I ⊂ {1, . . . , n}.

Proof. In fact, for an edge uv with weight d, take the path in T between u and v.
Let di1 ≤ · · · ≤ dik be the weights of edges of this path. Then dik ≤ d, otherwise
replacing the edge of weight dik with uv would give a spanning tree with a smaller

weight. Obviously d ≤
∑k

j=1 dik . Now, if we consider binary intervals containing
numbers dik , dik + dik−1

, . . . , dik + dik−1
+ · · · + d1, we see that this is a sequence of
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consecutive binary intervals. In fact, no interval is missed because each next number
is ≤ twice the previous.

Lemma 5.2. Denote by RS ′(n) the maximum possible number of intervals of the
form [2m, 2m+1) that contain at least one number of the form x +

∑
i∈I di where

0 ≤ x ≤ d1 and ∅ 6= I ⊂ {1, . . . , n} and the maximum is taken over all numbers
{d1, . . . , dn} satisfying 0 ≤ d1 ≤ . . . ≤ dn. Then RS ′(n) ≤ 2n.

Proof. We use induction. If for every j we have dj ≤ d1 +
∑

i<j di, then we have

dj ≤ 2j−1d1 and thus
∑

j dj ≤ (2n− 1)d1, so all the numbers of the form x+
∑

i∈I di
are between d1 and 2nd1, in this case RS ′(n) ≤ n+1. On the other hand, if there is a
j for which dj > d1+

∑
i<j di, then divide the di numbers into two groups, depending

on whether their index is less than j or not. For those di whose index is less than
j, the induction hypothesis implies that sums of their subcollections are present in
at most 2(j − 1) binary intervals. For those whose index is at least j we apply this
induction again, but now with dj in the role of d1. Since dj > d1 +

∑
i<j di we get

that the combined sums (we mean sums of some subcolletion in {d1, . . . , dj−1} and
some subcolletion in {dj, . . . , dn} are present in at most 2n intervals, and we are
done.

Lemma 5.1 implies that RS(n) ≤ RS ′(n− 1), therefore RS(n) ≤ 2n− 2. To get
2n− 3 we observe that when applying Lemma 5.2 to count the intervals for Lemma
5.1 we do not need to use x for the smallest group of terms; x is needed only for all
further groups to compensate for sums of terms from smaller groups. This decreases
the total by 1 and completes the proof.

6 To Section 4.2, page 108

Since we use k to denote the degrees of the graph (it is assumed to be k-regular),
it is slightly confusing that the number of vertices in the graph is assumed to be
2k + 1 (of course, there is no relation between these numbers).

7 Page 1148

S should be s

8 Page 115, formula (4.20)

In the mentioned formula suv〈f(u), f(v)〉 should be replaced by 2suv〈f(u), f(v)〉 in
each of the sides.

9 Page 1174

d should be n
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10 Proof of Theorem 4.28, end of the first paragraph

Replace “cardinality of Fn
2 ” by “(cardinality of Fn

2 )− 2k, because we need x /∈ V ”.

11 End of the Proof of Theorem 4.28

Replace “exponent in (4.40) is < n” by “number in (4.40) is < 2n − 2k”,

12 Section 4.5, equation (4.36)

In the equation and one line above it ` and l mean the same.

13 Chapter 5: Books on expanders

Tao [Tao15] has already published the book “Expansion in groups of Lie type”, based
on the blog cited in my book. Another highly recommended book on expanders is
[Kow12].

If you teach expanders to undergraduates, the text [KS11] could be helpful.

14 Page 137, line 2 from above

Change e− to e−.

15 Page 147, line 3 from below

Brackets are not needed in the left-hand side

16 Page 153, line 5 from above

Gt0
i should be Gt0

1

17 Page 154, lines 3 and 4 from above

Fr+1 should be Fr+1
q

18 Page 154, line from below

F should be replaced by Fq (twice)
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19 Sections 5.8 and 5.17: Probabilistic expanders

Puder [Pud15] is a very important contribution to probabilistic expanders.

20 To Section 6.5

The lecture notes of Pisier which were cited as [383] now appeared in a book form
[Pis16]. This book contains a lot of material related to different parts of my book, in
particular it contains a detailed (and including necessary background) presentation
of results on the Pisier-Xu space.

21 To Chapter 7

See Section 30 below.

22 Exercises to Chapter 7

Consider a sequence {Gn} of expanders. Let V = Vn be a vertex set of one of them.
We partition V into finitely many pieces P n

1 , . . . , P
n
k , k = k(n), in such a way that

lim
n→∞

max1≤i≤k(n) |P n
i |

|Vn|
= 0. (1)

We say that such partitions are without dominating clusters.

We build a new graph Qn with the vertex set {1, . . . , k(n)} as follows: two vertices
are joined by an edge if the corresponding parts are joined by an edge. So Qn is a
minor of Gn if the sets P n

1 , . . . , P
n
k are connected. Observe that the natural quotient

map Vn → Qn is 1-Lipschitz. So the result is a weak expander if it has bounded
geometry.

We get such weak expander if the partitions P n
1 , . . . , P

n
k , k = k(n), n ∈ N are

uniformly bounded in the sense that

sup
n∈N, 1≤i≤k(n)

|P n
i | <∞. (2)

Exercise 22.1. Can we get a bounded geometry quotient graph in cases where the
partitions are not uniformly bounded?

Exercise 22.2. Can it happen that the partitions of {Gn} are

• Not uniformly bounded.

• Without dominating clusters.

• The corresponding quotients {Qn} have uniformly bounded geometry, but do
not form a family of expanders?
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23 Hints to exercises in Chapter 7

To Exercise 22.1. Let {Fn} and {Hn} be two families of expanders and Gn =
Fn ×Hn be their graph-theoretical Cartesian products. (This means that V (Gn) =
V (Fn) × V (Hn), and two vertices (u1, w1) and (u2, w2) are adjacent if and only if
either u1 = u2 and w1 and w2 are adjacent in Hn or w1 = w2 and u1 and u2 are
adjacent in Fn.) Show that the Cartesian product of two families of expanders is a
family of expanders.

To Exercise 22.2. Consider two families of expanders, {Fn} and {Hn}. Attach
to each Fn a path length ln |V (Hn)|. Build the family of expanders starting with
Cartesian products of Fn and Hn, and such that the ‘fibers’ corresponding to the
path ‘decrease’ to one vertex as we move from Fn along the path.

24 The notion of “base point”

Base points are mentioned on page 308 and in the Subject Index, but never defined.
The base point means the same as the distinguished point mentioned on page 309.

25 To Section 9.5.1: Superreflexivity and binary trees

Kloeckner [Klo14] found a simple proof of the “if” part of Bourgain’s theorem (stated
as Theorem 9.43 in the book).

Ostrovskii [Ost14c] proved that (finite) binary trees do not admit uniformly bilip-
schitz embeddings into diamonds (the converse is also true and is easy to see). This
result shows that the Johnson-Schechtman characterization of superreflexivity in
terms of diamond is (in a sense) independent from the Bourgain characterization of
superreflexivity in terms of binary trees.

Leung, Nelson, Ostrovska, Ostrovskii [LNOO17+] found precise-up-to a logarith-
mic factor estimates for distortion of embeddings of binary trees into diamonds.

Day [Day41] used a “self-improvement” argument before James [Jam64a].

26 To Section 9.5.2: Further results on test-spaces

It was shown [Ost14c] that any nontrivial word hyperbolic group is a test-space for
superreflexivity. In the same paper one can find an easy way of getting one-test-
space characterization from a test-space characterization using many finite metric
spaces.

27 To Section 9.5.4: Non-local properties

Further results on the metric characterization of the Radon-Nikodým property were
obtained in [Ost14a] and [Ost14b].
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Important progress in metric characterization of reflexivity was achieved in [MS17+].
An important metric characterization was obtained in [BKL10] prior to publica-

tion of my book. A related recent publication is [BCDK+].

28 To Chapter 10

The Lipschitz free spaces are also studied in terms of Wasserstein 1 norm, see, for
example, and important application of such spaces in [NR17, Section 3].

29 To Section 10.4, p. 325

The end of the argument (preceding (10.17)) is a bit sloppy. We need to write
something like (normalizing the measures to probability ones and assuming ai ≥ 0)

max
Θ

∑
ai|Fi(Θ)| ≥

∑
ai

∫
|Fi(Θ)|dΘ ≥

∑
ai

∣∣∣∣∫ Fi(Θ)dΘ

∣∣∣∣ .
30 To Problem 11.9: The main problem on obstacles for

coarse embeddability of bounded geometry metric spaces
into `2

This problem was solved in the negative by Arzhantseva and Tessera [AT15]. They
provide two different construction and discuss many interesting related questions.

31 To Problem 11.17: Coarse embeddability of `2

Problem 11.7 was answered in the negative by F. Baudier, G. Lancien, and T. Schlum-
precht in [BLS17+]. The main counterexample is the space constructed by Tsirelson
[Tsi74]. (This was one of the spaces which I suggested to look at in my book after
posing Problem 11.7.)

My other suggestion was to look at nonreflexive spaces with nontrivial type. This
suggestion is questionable as it is known [BS75, BS76] that some of such spaces
contain unconditional bases and hence admit coarse embeddings of `2 into them by
the mentioned result of [Ost09].

32 Acknowledgement

I would like to thank Miroslav Bacak for sending me a list of corrections.
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