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A metric space is called locally finite if each

ball of finite radius in it has finitely many el-

ements. (Finitely generated groups with their

word metrics are locally finite metric spaces.)

The main goal of the talk is to describe the

tools needed to prove the following results and

to mention some of their applications.

Main Theorem: (1) Let A be a locally finite

metric space whose finite subsets admit uni-

formly bilipschitz embeddings into a Banach

space X. Then A admits a bilipschitz embed-

ding into X.

(2) Let A be a locally finite metric space whose

finite subsets admit uniformly coarse embed-

dings into a Banach space X. Then A admits

a coarse embedding into X.

Let me recall the definitions.



Let C < ∞. A map f : (A, dA) → (Y, dY ) be-

tween two metric spaces is called C-Lipschitz

if

∀u, v ∈ A dY (f(u), f(v)) ≤ CdA(u, v).

A map f is called Lipschitz if it is C-Lipschitz

for some C <∞.

For a Lipschitz map f we define its Lipschitz

constant by

Lipf := sup
dA(u,v)6=0

dY (f(u), f(v))

dA(u, v)
.

A map f : A → Y is called a C-bilipschitz em-

bedding if there exists r > 0 such that

∀u, v ∈ A rdA(u, v) ≤ dY (f(u), f(v)) ≤ rCdA(u, v).

(1)

A bilipschitz embedding is an embedding which

is C-bilipschitz for some C <∞. The smallest

constant C for which there exist r > 0 such

that (1) is satisfied is called the distortion of f .

A set of embeddings is called uniformly bilip-

schitz if they have uniformly bounded distor-

tions.



A map f : (X, dX)→ (Y, dY ) between two met-
ric spaces is called a coarse embedding if there
exist non-decreasing functions ρ1, ρ2 : [0,∞)→
[0,∞) (observe that this condition implies that
ρ2 has finite values) such that limt→∞ ρ1(t) =
∞ and

∀u, v ∈ X ρ1(dX(u, v)) ≤ dY (f(u), f(v))

≤ ρ2(dX(u, v)).
(2)

A sequence of embeddings is called uniformly
coarse if all of them satisfy (2) with the same
ρ1 and ρ2.

The proof of the Main Theorem is such that it
allows to prove similar results for other types
of embeddings. For example, it can be used to
answer in the negative the following question
of Naor and Peres (2011):

Question (Question 10.7 in Naor-Peres (2011))

Let p ∈ [1,∞), p 6= 2. Does there exist a
finitely generated group G for which α∗Lp(G) 6=
α∗`p(G)?

In this question we use the following definition,
and Lp = Lp(0,1).



Definition: Given a target metric space (X, dX)
the compression exponent of a group G (en-
dowed with its word metric) in X, denoted
α∗X(G), is the supremum over α ∈ [0,1] for
which there exists a Lipschitz function f : G→
X satisfying dX(f(x), f(y)) ≥ cdG(x, y)α.

Another application of the Main Theorem which
I found (2014) is the following:

Any word hyperbolic group with its word metric
admits a bilipschitz embedding into any non-
superreflexive Banach space (in particular, into
any nonreflexive Banach space).

A Banach space (X, || · ||) is called nonsuper-
reflexive if it does not admit a uniformly convex
norm ||| · ||| satisfying the condition

∀x ∈ X c1||x|| ≤ |||x||| ≤ c2||x||
for some 0 < c1 ≤ c2 <∞.

A norm is called uniformly convex if for each
ε ∈ (0,2] there exists δ > 0 such that |||x||| =
|||y||| = 1 and |||x− y||| ≥ ε imply

|||
x+ y

2
||| ≤ 1− δ.



I think that further applications of the Main

Theorem have to wait till people will become

interested in embeddings into small Banach

spaces (like `p, p 6= 2,∞) or into exotic Ba-

nach spaces.

The proof of the Main Theorem starts with

the well-known observations belonging to math

folklore. (Details and necessary background

can be found in my book “Metric Embeddings”,

Chapter 2). The observation can be described

as: embeddability of finite pieces of a metric

space A into a Banach space X imply the em-

beddability of A into a larger Banach space,

obtained as some kind of limit related to the

Banach space X.

It is convenient to use the following notions:

Let I be an infinite set. A filter on I is a subset

F of P(I) (where P(I) is the set of all subsets

of I) satisfying the following conditions:

(a) ∅ /∈ F. (b) If A ⊂ B and A ∈ F, then B ∈ F.

(c) If A,B ∈ F, then A ∩B ∈ F.



Useful Example: I = N, F is the set of all

subsets of N having finite complement.

Let Z be a topological space, f : I → Z be

a function. We say that f converges to z ∈ Z
through F and write limF f(x) = z, if f−1(U) ∈
F for every open set U containing z.

An ultrafilter U (on I) is a maximal filter (on

I) with respect to inclusion, that is, a filter

which is not properly contained in any larger

filter.

Lemma: Every filter is contained in an ultra-

filter.

An ultrafilter is called free if the intersection

of all sets of the ultrafilter is empty. (Some

authors use nonprincipal or nontrivial instead

of ‘free’.)

We can find a free ultrafilter by applying the

lemma to the filter of all sets with finite com-

plements in N.



Lemma: Let U be an ultrafilter on I, K be

a compact set, and f : I → K be a function,

then f converges to some point k ∈ K through

U.

This lemma explains the usefulness of the no-

tion of ultrafilter: In many constructions we

need to pass to subsequences repeatedly and

then consider the diagonal subsequence. Ul-

trafilters provide what can be called universal

diagonal subsequence.

Given a family (Xi)i∈I of Banach spaces, the

`∞ direct sum of (Xi)i∈I is defined as the space

of all bounded collections (xi)i∈I, xi ∈ Xi with

the vector operations (xi)i∈I + (yi)i∈I = (xi +

yi)i∈I, α(xi)i∈I = (αxi)i∈I, and the norm given

by

||(xi)i∈I ||∞ = sup
i∈I
||xi||Xi.

The `∞ direct sum is denoted by (⊕i∈IXi)∞.

It is easy to check that (⊕i∈IXi)∞ is a Banach

space.



Let U be a free ultrafilter on I. By the last

lemma the limit limU ||xi||Xi exists for each (xi)i∈I ∈
(⊕i∈IXi)∞. It is easy to see that limU ||xi||Xi is

a seminorm on (⊕i∈IXi)∞. (Recall that a semi-

norm is like norm except that ||x|| = 0⇒ x = 0

is not required.) Let NU be the subspace of

(⊕i∈IXi)∞ on which this seminorm is equal to

0.

One can easily check that limU ||xi||Xi induces

a norm on the quotient space (⊕i∈IXi)∞/NU .

The obtained Banach space is called the ultra-

product of (Xi)i∈I with respect to the ultrafil-

ter U. We denote it by (
∏
i∈I Xi)U or (

∏
Xi)U .

If all Xi are the same, the corresponding ul-

traproduct is also called an ultrapower and is

denoted XU .

The folklore result which I mentioned is the

following:



Proposition: Let A be a metric space which

is represented as a union of metric subspaces

{Ai}∞i=1 satisfying A1 ⊂ A2 ⊂ A3 ⊂ . . . . Sup-

pose that {Ai}∞i=1 admit uniformly bilipschitz

(uniformly coarse) embeddings fi : Ai → Xi
into Banach spaces {Xi}∞i=1. Then A admits a

bilipschitz (coarse) embedding into (
∏
Xi)U for

any free ultrafilter U. If all Xi are the same,

we get an embedding into an ultrapower of X.

The proof is a straightforward application of

the definitions (see Proposition 2.21 in my book).

This proposition implies the Main Theorem in

some important cases. The most important

case is based on the following result:

Theorem: Each separable subspace of any ul-

trapower of Lp(0,1) is isometric to a subspace

of Lp(0,1).

I do not know who proved this theorem first, it

has its roots in the paper of Dacuhna-Castelle

and Krivine (1972), a complete proof is given

in a partially-survey paper of Heinrich (1980).



So for Banach spaces X satisfying the condi-

tion: each separable subspace of an ultrapower

of X is isometric (actually bilipschitz embed-

dability suffices) to a subspace of any ultra-

power of X the Main Theorem was a folklore

result. It is a new result for spaces which do

not satisfy the condition. Examples of spaces

which do not satisfy this condition are `p, p 6=
2,∞ and numerous other spaces constructed in

Banach spaces as examples/counterexamples

to various statements/conjectures.

Since the bilipschitz embeddability is the strongest

form of embeddability which we are going to

consider, all versions of the Main Theorem

(both the stated ones and other versions which

one can state, related to Hölder maps, com-

pression exponents, etc) follow from the fol-

lowing result:

Lemma: Let M be a locally finite subset of an

ultrapower of a Banach space X. Then there

exists a bilipschitz embedding of M into X.


