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Abstract

The paper aims to prove two universality results which can be used to simplify
some of the available proofs of non-embeddability results for the Gromov-
Hausdorff metrics.
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1 Introduction

The notion of the Hausdorff distance between two subsets of a metric space goes
back to [7]. In [5], Gromov modified this notion and in this way created a tool for
comparing two metric spaces not being subspaces of the same metric space. Gromov
considered this modification utterly natural and, as such, continued to call it the
Hausdorff distance. It should be pointed out that similar modifications were introduced
by, for example, Edwards [3], Kadets [10] and, possibly, many others. Meanwhile, it
was Gromov [5] who developed a way of thinking based on this generalization and
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demonstrated its first impressive applications. For this reason, it became customary
to call this distance the Gromov-Hausdorff distance. We follow this tradition.

To present the results of this work, let us remind the necessary definitions. The
Hausdorff distance dH(X,Y ) between two subsets X and Y of a metric spaces Z is
defined as the infimum of all ε > 0 such that Y is in the ε-neighborhood of X and
X is in the ε-neighborhood of Y. Notice that dH(X,Y ) can be infinite. The Gromov-
Hausdorff distance between metric spaces X and Y is defined as infZ dH(X,Y ), where
the infimum is taken over all metric spaces Z, such that Z = X ∪ Y as a set, and the
metric on Z agrees with the metric of X on X and the metric of Y on Y .

For a general introduction to the Gromov-Hausdorff distance we refer to [1]. It is
worth mentioning that nowadays the arguments in the geometric group theory, based
on the Gromov-Hausdorff distance, can be expressed in terms of asymptotic cones, see
[6, Section 2]. The Gromov-Hausdorff distance is also used in Functional Analysis, see
[11]. In addition, the Gromov-Hausdorff distance has gained a popularity in applied
areas, such as shape recognition and cluster analysis. See [2, 14, 15] and references
therein.

Recently, the investigation of the bilipschitz and coarse embeddability for some of
the Gromov-Hausdorff metrics - in the sense of the Metric Embeddings theory, see
[16] - into Banach spaces with some special properties has been initiated in a number
of researches. See [17], [18] and references therein. The present article fits this area.

Our aim is to prove two universality results that allow to simplify significantly
proofs of some available results in this direction. For example, applying Theorem 1
one can derive a simpler proof of Zava’s result given in [18, Theorem 4.2].

2 Statement of results

Consider finite subsets of R as metric spaces with the induced metrics. Denote by
Fin(R) the set of all such finite metric spaces. We endow this set of metric spaces
with the Gromov-Hausdorff distance. Our first universality result is:
Theorem 1. Each finite metric space can be isometrically embedded into the metric
space (Fin(R), dGH).

In order to proceed, let us recall some definitions.
Definition 1. A metric space (A, d) is bilipschitz embeddable into a Banach space X
with distortion C ≥ 1 is there is a map F : A → X such that ∀u, v ∈ A d(u, v) ≤
∥F (u)− F (v)∥ ≤ Cd(u, v).

A metric space (A, d) is coarsely embeddable into X with (non-negative, indefinitely
increasing at ∞ on [0,∞)) control functions ρ1, ρ2 if there is a map F : A → X such
that ∀u, v ∈ A ρ1(d(u, v)) ≤ ∥F (u)− F (v)∥ ≤ ρ2(d(u, v)).

According to these definitions, the next immediate consequence of Theorem 1 can
be stated as follows:
Corollary 1. If there exists a sequence of finite metric spaces which do not admit
embeddings into some Banach space X with uniformly bounded distortions/with the
same control functions for the whole sequence, then (Fin(R), dGH) does not admit a
bilipschitz embedding into X/does not admit a coarse embedding into X.
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The goal of [18, Theorem 4.2] is to prove a version of Corollary 1. The argument
in [18] is based on a different notion of universality. The proof is substantially more
complicated than that of Theorem 1 and allows to prove a version of Corollary 1
for coarse embeddings only. As in [18], we combine a universality result with a non-
embeddability one for finite metric spaces. Zava [18] applied the result of Lafforgue [12]
stating that there exist a sequence of finite metric spaces which do not admit coarse
embeddings into a uniformly convex Banach space with the same control functions.

Note that there are numerous other results to which Corollary 1 is applicable. Some
of them can be found in [12], [13], and the monograph [16].

A metric space (A, d) is called uniformly discrete, if there exists a real number
δ > 0 such that d(u, v) ≥ δ for any two elements u, v ∈ A. Denote by UD(R) the set
of all uniformly discrete subsets of the real line R, considered as metric spaces with
metrics induced from R. We endow this set of metric spaces with the Gromov-Hausdorff
distance.

Our second universality result is the following.
Theorem 2. Each metric space of finite diameter having a countable dense subset
admits an isometric embedding into (UD(R), dGH) .

Note that every compact metric space satisfies the condition of Theorem 2.
Remark 1. The statements of our universality results sound similar to the statements
of the results in [8] and [9]. Nevertheless, our and their results are quite different. In
distinction to the results of Theorems 1 and 2, the target space in the mentioned papers
is the space of isometry classes of all compact metric spaces with the Gromov-Hausdorff
distance.

3 Proofs of the results

Proof of Theorem 1. Let (M,d) be a finite metric space whose elements are
{x1, . . . , xn} and let D be the diameter of this set. We introduce a map S : M →
(Fin(R), dGH) as described below:

The image S(xi) =: si is a subset of R, whose 2n + 1 elements - listed in the
increasing order - are {mk(xi)}2nk=0. These elements are given by:

� m0(xi) = −5D (for all elements of M)
� m1(xi) = 3D + d(xi, x1)
� m2(xi) = 7D − d(xi, x1)
� m3(xi) = 9D + d(xi, x2)
� m4(xi) = 13D − d(xi, x2)
� . . .
� m2n−1(xi) = 3(2n− 1)D + d(xi, xn)
� m2n(xi) = 3(2n)D +D − d(xi, xn)

Note that each set si is of the following form:

� It starts with a point −5D
� The next point is in the interval [3D, 4D]
� The next point is in the interval [6D, 7D]
� . . .
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� The last point is in the interval [3(2n)D, (3(2n) + 1)D]

Now, we need the following auxiliary results:

Lemma 1. dGH(si, sj) ≤ d(xi, xj).

Proof. To prove this inequality it suffices to find the Hausdorff distance between si
and sj as subsets of R. The triangle inequality implies dH(si, sj) ≤ maxk |d(xi, xk)−
d(xj , xk)| = d(xi, xj) and the statement follows.

The next observation is going to come in handy.

Observation 1. If Ii : si → U and Ij : sj → U are two isometric embeddings into
a metric space (U , dU ), and the Hausdorff distance dH between the images satisfies
dH < D, then dU (Ii(mk(xi)), Ij(mk(xj))) ≤ dH for every k = 0, . . . , 2n.

Proof. Assume the contrary, and let k0 be the smallest k for which

dU (Ii(mk(xi)), Ij(mk(xj))) > dH .

First, we consider the case k0 = 0. In this case, there exists t > 0 such that
dU (Ii(m0(xi)), Ij(mt(xj))) ≤ dH < D. This implies that

2D − dH ≤ dU (Ii(m0(xi), Ij(mt±1(xj))) ≤ 4D + dH (1)

for those of {t− 1, t+ 1} which are in the set {1, . . . , 2n}.
On the other hand, since Ii is an isometry, for each k ∈ {1, . . . , 2n}, the inequality

below is true:
dU (Ii(m0(xi), Ii(mk(xi))) ≥ 8D.

Thus, none of the elements Ii(mk(xi)), k ∈ {0, . . . , 2n}, can be within distance dH ≤ D
from Ij(mt±1(xj)).

This contradiction with our assumption on the Gromov-Hausdorff distance yields:

dU (Ii(m0(xi)), Ij(m0(xj))) ≤ dH .

Since Ii and Ij are isometries, we get

5 + 3kD ≤ dU (Ii(m0(xi)), Ii(mk(xi))) ≤ 5 + (3k + 1)D,

5 + 3kD ≤ dU (Ij(m0(xj)), Ij(mk(xj))) ≤ 5 + (3k + 1)D,

for every k ∈ {1, 2, . . . , 2n}.
Combining these inequalities with the fact that dH < D and the triangle inequality,

one concludes that Ii(mk(xi)) is the only element of the sequence {Ii(mk(xi))}2n+1
k=0

which can be within distance dH < D from Ij(mk(xj)). More details for this argument
can be found in the last part of the proof of Observation 2. There, the statement is
established for infinite sequences, but the finite version of that proof is immediate.

The observation is proved.

Lemma 2. dGH(si, sj) ≥ d(xi, xj).

4



Proof. Observation 1 implies that if the Hausdorff distance dH between the images of
some isometric embeddings Ii; si → U and Ij : sj → U satisfies dH < d(xi, xj), then

dU (Ii(mk(xi)), Ij(mk(xj))) < d(xi, xj) for all k. (2)

To derive a contradiction, we consider the following four points:
m2i−1(xi) = 3(2i− 1)D,
m2i(xi) = 3(2i)D +D,
m2i−1(xj) = 3(2i− 1)D + d(xj , xi),
m2i(xj) = 3(2i)D +D − d(xj , xi).
Since Ii and Ij are isometries, the equalities below hold:

dU (Ii(m2i−1(xi)), Ii(m2i(xi))) = 4D.

dU (Ij(m2i−1(xj)), Ij(m2i(xj))) = 4D − 2d(xi, xj).

This leads to a contradiction with (2) since

4D = dU (Ii(m2i−1(xi)), Ii(m2i(xi)))

≤ dU (Ii(m2i−1(xi)), Ij(m2i−1(xj))) + dU (Ij(m2i−1(xj)), Ij(m2i(xj)))

+ dU (Ij(m2i(xj)), Ii(m2i(xi)))

(2)
< d(xi, xj) + (4D − 2d(xi, xj)) + d(xi, xj) = 4D.

Proof of Theorem 2. This proof goes along the same lines as our proof of Theorem 1.
For the sake of convenience, we change some notation.

Let (M,d) be a metric space of finite diameter D, having a countable dense subset
{xi}∞i=1.

We introduce an embedding of S : M → (UD(R), dGH) by S(x) = {mi(x)}∞i=0,
where {mi(x)}∞i=0 is an increasing sequence in R given by

� m0(x) = −5D (for all x)
� m1(x) = 3D + d(x, x1)
� m2(x) = 7D − d(x, x1)
� m3(x) = 9D + d(x, x2)
� m4(x) = 13D − d(x, x2)
� . . .
� m2i−1(x) = 3(2i− 1)D + d(x, xi)
� m2i(x) = 3(2i)D +D − d(x, xi)
� . . .

The sequence {mi(x)}∞i=0 is uniformly discrete for every x because it satisfies the
conditions:

� m0(x) = −5D
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� The point m1(x) is in the interval [3D, 4D]
� The point m2(x) is in the interval [6D, 7D]
� . . .
� The point mi(x) is in the interval [3iD, (3i+ 1)D]
� . . .

At this point, we need the next

Lemma 3. For any x, y ∈ M dGH(S(x), S(y)) ≤ d(x, y).

Proof. To get an upper estimate, it suffices to evaluate the Hausdorff distance between
S(x) and S(y) as subsets in R. The triangle inequality implies

dH(S(x), S(y)) ≤ max
i

|d(x, xi)− d(y, xi)| ≤ d(x, y)

and the lemma follows.

Observation 2. If Ix : S(x) → U and Iy : S(y) → U are two isometric embeddings
into a metric space (U , dU ), and the Hausdorff distance dH between the images satisfies
dH < D, then dU (Ix(mi(x)), Iy(mi(y))) ≤ dH for every i ∈ {0} ∪ N.

Proof. Assume the contrary, and let i0 be the smallest i for which

dU (Ix(mi(x)), Iy(mi(y))) > dH .

First, consider the case i0 = 0. In this case, for some t > 0, there holds:

dU (Ix(m0(x)), Iy(mt(y))) ≤ dH < D.

If t > 1, this implies that 2D − dH ≤ dU (Ix(m0(x)), Iy(mt±1(y))) ≤ 4D + dH while if
t = 1, the inequality

2D − dH ≤ dU (Ix(m0(x)), Iy(mt±1(y))) ≤ 4D + dH (3)

is guaranteed only for t+ 1.
On the other hand, since Ix is an isometry, we have

dU (Ix(m0(x)), Ix(mk(x))) ≥ 8D for each k ∈ N.

Consequently, none of the elements Ix(mk(x)), k ∈ {0} ∪ N, can be within distance
dH ≤ D from Iy(mt+1(y)).

This contradiction implies that dU (Ix(m0(x)), Iy(m0(y))) ≤ dH . Since Ix and Iy
are isometries, one gets:

5 + 3iD ≤ dU (Ix(m0(x)), Iy(mi(x))) ≤ 5 + (3i+ 1)D,

5 + 3iD ≤ dU (Iy(m0(y)), Iy(mi(y))) ≤ 5 + (3i+ 1)D.
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At this stage, our goal is to show that these inequalities imply that we have

dU (Ix(mi(x)), Iy(mj(y))) > D for each i, j ∈ N with i ̸= j

and, therefore, Iy(mi(y)) is the only element of the sequence {Iy(mk(y))}∞k=0 which
can be within distance dH < D from Ix(mi(x)).

To reach this goal, assume without loss of generality that i < j. Then,

dU (Ix(mi(x)), Iy(mj(y)))

≥ dU (Iy(mj(y)), Iy(m0(y)))− dU (Iy(m0(y)), Ix(m0(x)))− dU (Ix(m0(x)), Ix(mi(x)))

≥ 5 + 3jD − dH − (5 + (3i+ 1)D) = (3j − 3i− 1)D − dH ≥ 2D − dH > D.

This contradiction proves the observation.

To finalize the proof of the theorem, one more lemma is needed.

Lemma 4. For any x, y ∈ X, the inequality dGH(S(x), S(y)) ≥ d(x, y) holds.

Proof. Assume the contrary, that is, suppose that there exist x, y ∈ X, ε > 0, and
embeddings Ix : S(x) → U and Iy : S(y) → U , such that dH(S(x), S(y)) < d(x, y)− ε.
By Observation 2, this implies that dU (Ix(mi(x)), Iy(mi(y))) < d(x, y) − ε for every
i ∈ {0} ∪ N. Since {xk}∞k=1 is dense in M , one can pick i ∈ N so that d(x, xi) < ε/2.

To derive a contradiction, consider the following four points on the real line:
m2i−1(x) = 3(2i− 1)D + d(x, xi) < 3(2i− 1)D + ε

2 ,
m2i(x) = 3(2i)D +D − d(x, xi) > 3(2i)D +D − ε

2 ,
m2i−1(y) = 3(2i− 1)D + d(y, xi) > 3(2i− 1)D + d(x, y)− ε

2 ,
m2i(y) = 3(2i)D +D − d(y, xi) < 3(2i)D +D − d(x, y) + ε

2 .
Since Ix and Iy are isometries, the inequalities above amount to

dU (Ix(m2i(x)), Ix(m2i−1(x))) > 4D − ε.

dU (Iy(m2i(y)), Iy(m2i−1(y))) < 4D − 2d(x, y) + ε.

This leads to a contradiction because we have:

4D < dU (Ix(m2i(x)), Ix(m2i−1(x))) + ε

< dU (Ix(m2i(x)), Iy(m2i(y))) + dU (Iy(m2i(y)), Iy(m2i−1(y)))

+ dU (Iy(m2i−1(y)), Ix(m2i−1(x))) + ε

< d(x, y)− ε+ 4D − 2d(x, y) + ε+ d(x, y)− ε+ ε = 4D.

Theorem 2 now follows from Lemmas 3 and 4.

Remark 2. Our embeddings in Theorems 1 and 2 can be regarded as pointed two-sided
Fréchet embeddings, see [4] and [16, Proposition 1.17].

Acknowledgements. The second-named author gratefully acknowledges the sup-
port by the National Science Foundation grant NSF DMS-1953773.

7



References

[1] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry. Graduate Studies
in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.

[2] G. Carlsson, F. Mémoli, Characterization, stability and convergence of hierarchi-
cal clustering methods. J. Mach. Learn. Res. 11 (2010), 1425–1470.

[3] D.A. Edwards, The structure of superspace. Studies in topology (Proc. Conf.,
Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish
Acad. Sci.), pp. 121–133, Academic Press, New York-London, 1975.
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