1. Find the intervals of increase and decrease of the given function, as well as all local extreme values.

 (a) \(f(x) = x^4 - 4x^3 + 4x^2 \)

 (b) \(g(x) = e^{2x} + e^{-x} \)

2. Use the first and second derivatives to sketch the graph of the given function. (Be sure to include any vertical or horizontal asymptotes in your sketch.)

 (a) \(f(x) = x^3 - 6x^2 - 15x + 10 \)

 (b) \(g(x) = \frac{1}{x^2 - 9} \)

3. A box with an open top is to be made by cutting small congruent squares from the corners of a 12 inch by 12 inch piece of cardboard and bending up the sides. How large should the corner squares be to make the box hold as much as possible?

4. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. The farmer needs no fence along the river. What are the dimensions of the field that has the largest area?

5. You are asked to design a one-liter can shaped like a right circular cylinder that uses the least amount of material. What dimensions should you use? Note that if the radius of the can, \(r \), and the height of the can, \(h \), are measured in centimeters, then the volume of the can in cubic centimeters is \(\pi r^2 h = 1000 \) (since 1 liter = 1000 cm\(^3\)).

6. The top and bottom margins of a poster are each 6 cm and the side margins are each 4 cm. If the area of the printed material on the poster is fixed at 384 cm\(^2\), find the dimensions of the poster with the smallest area.